LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Com./B.A. (ECO.) DEGREE EXAMINATION

THIRD SEMESTER - NOVEMBER 2007
MT 3203 / 3200-BUSINESS MATHEMATICS
Date: 05/11/2007
Time : 9:00-12:00
Dept. No. \square Max. : 100 Marks

PART-A

Answer ALL questions
$10 \times 2=20$

1. Define a demand function with an example.
2. Find the equilibrium price by the method of demand given the functions
$\mathrm{Q}_{\mathrm{d}}=50-\frac{8 \mathrm{p}}{7}$ and $\mathrm{Q}_{\mathrm{s}}=10+\frac{2 \mathrm{p}}{3}$.
3. If the total cost $C=\frac{2}{3} \mathrm{x}+\frac{35}{2}$, find the marginal cost when the output in 3 units.
4. Differentiate $\frac{\mathrm{e}^{\mathrm{x}}}{1+\mathrm{x}}$ with respect to x .
5. Evaluate: $\int\left(x^{2}-1\right) d x$
6. If the marginal revenue is $2 p+4$, find the demand function.
7. Find $(\mathrm{AB}) \mathrm{C}$ if $\mathrm{A}=\left(\begin{array}{rr}2 & 1 \\ -3 & 4\end{array}\right), \mathrm{B}=\binom{1}{2}, \mathrm{C}=\left(\begin{array}{ll}0 & -1\end{array}\right)$.
8. Evaluate $\left|\begin{array}{lll}2 & 0 & 4 \\ 0 & 1 & 5 \\ 1 & 2 & 0\end{array}\right|$.
9. Resolve into partial fractions : $\frac{1}{(x-1)(x-2)}$.
10. Find the average fixed cost for the function $C(x)=3 x^{2}-4 x+6$.

PART-B

Answer any FIVE questions

11. Find the elasticity of demand and supply at equilibrium price for the demand function
$\mathrm{p}=\sqrt{100-\mathrm{x}^{2}}$ and supply function $\mathrm{x}=2 \mathrm{p}-10$, where p is the price and x is the quantity.
12. Verify the relationship $\mathrm{MR}=\mathrm{p}\left(1-\frac{1}{\eta_{\mathrm{d}}}\right)$ for the demand function $p=(12-x)^{\frac{1}{2}}, 0 \leq x \leq 12$.
13. Differentiate $\frac{(x+1)(2 x-1)}{(x-3)}$ with respect to x.
14. If $x^{y}=e^{x-y}$ then prove that $\frac{d y}{d x}=\frac{\log x}{(1+\log x)^{2}}$.
15. Integrate $\frac{1}{3 x^{2}+2 x+5}$ with respect to x.
16. Evaluate: a) $\int_{0}^{1} x(1-x)^{10} d x$
b) $\int x^{n} \log x d x$
17. Resolve into partial functions : $\frac{1}{(x-2)\left(x^{2}-6 x+8\right)}$
18. Find the rank of the matrix $\left(\begin{array}{rrc}-1 & 1 & 1 \\ 1 & -1 & 2 \\ -1 & 1 & 10\end{array}\right)$.

PART -C

Answer any TWO questions

19 a) If AR and MR denote the average and marginal revenue at any output show that elasticity of demand is equal to $\frac{A R}{A R-M R}$.Verify this law for the linear demand law $\mathrm{p}=\mathrm{a}+\mathrm{bx}$.
b) A manufacturer produces tubes and bulbs. It takes 1 hour of work on machine M and 3 hours of work on machine N to produce one package of bulbs while it takes 3 hours of work on machine M and 1 hour of work on machine N to produce a package of tubes. He earns a profit of Rs 12.50 per package of bulbs and Rs 5 per package of tubes. How many packages of each should he produced each day so as to maximize his profit if he operates the machine for at most 12 hours a day.
20 a) Find the maxima and minima for $\frac{2}{3} x^{3}+\frac{1}{2} x^{2}-6 x+8$.
b) If $y=\left(x+\sqrt{1+x^{2}}\right)^{m}$, show that $\left(1+x^{2}\right) y_{2}+x y_{1}=m y^{2} .21$ a) The marginal cost of a firm is given by $\mathrm{C}^{\prime}(\mathrm{q})=5+0.13 q$, Further marginal revenue $R^{\prime}(q)=18$.Also it is given that $C(0)=$ Rs. 120 . Compute the total profit.
b) Determine the consumer and producer surplus under pure competition for the demand function $\mathrm{p}=36-\mathrm{x}^{2}$ and the supply function $\mathrm{p}=6+\frac{\mathrm{x}^{2}}{4}$, where p is the price and x is quantity.

22 a) Suppose the interrelationship between the production of two industries R and S in a given year is

	R	S	Demand	Total output
R	14	6	8	28
S	7	18	11	36
If the forecast demand in two years is $\mathrm{D}=\binom{20}{30}$. What should be total output X ?				

b) Find the inverse of $\left(\begin{array}{ccc}1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3\end{array}\right)$.

